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PERIODIC AND ALMOST-PERIODIC SOLUTIONS
OF DIFFERENTIAL SYSTEMS

P, Talpalaru

This article discusses some problems concerning the
-existence of periodic and almost-periodic solutions of cer-
tain differential systems. '

;

In this article, we shall consider some problems concerning the existence
of periodic and almost-periodic solutions of certain differential systems., We
shall use the fixed-point method (in the form of Banach's theorem) and the
Lyapunov-function method.,

1. Let A() denote an » X » matrix satisfying the following two conditions:

1° A(f) is continuous and w~periodic;
2° the system

= A(t)x; (L.1)

where » & R", has no w-periodic solutions except x(¢) = 0..

Let us denote by X(¢) the fundamental matrix of the system (1.1) such that
X(0)=E . If = x(f) is a solution of the system (1.1), then » = z(t 4+ «)'is
also a solution, ' ' N

We know that -

X+ w) =X() - X(w).

On the other hand, the matrix B = X(w) — E is such that B = det (X(w)~—
— E) =0.

" *Numbers in the margin indicate pagination in the foreign téi:t.
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To see this, let us suppose that det B = 0. Then, there exists a vector
‘%30 such that

Bl = (X(w) — E)h = 0.

The function #(f) = X({)% is a solution of the system (1, 1), and it is'obvious that

X o) = X4 o) = X(OX(0)h = X[ = x()
which constitutes a contradiction.
Let us also note that
B-'X(w) = X()Bv1, X{w)B = BX(a),
which follows from the equation
B-X(a) = (X1 (o) = B)X(a) = E — X(0) = X(a)(X-(0)~E) =
‘ X(w)B~1
and the equation

K(0)B = X(a)(X(0) = E) = X(0)(E = X-3(u))X(a) =

= (X(0) = E)X(0) = BX(a).
Since
X(t 4 w) = X({#)X(w)

it follows that

X-dt+ @) = XY@ X-2.
By virtue of conditions 1°and 2°, the system
&= 4% + £, (1.2)
where f({) is an w-periodic function, has exactly one w-periodic solution, More

precisely, one can prove the
Lemma. The function

}

;

L

u(t) = — X)) B-1X (o) SX-J (s) f(s)@s : (1.3)

3

is an w-periodic solution of the system (1, 2).



This lemma can be proven by showing that w(t 4+ o) = u{t) and that

du E
o= Al + 1),

The proof can be found, for example, in [3] and [4].

In what follows, we shall consider the system
&= Al)x gl %), (1.4)

where A is a real parameter and g{¢; ) is an operator defined on C(— oo, <o),
for ¢ & (— oo, 00) (that is, on the space of continuous bounded functions defined
on (—o0, o0), that have values in R*), To emphasize that the image, under the

operator g, of a function x() & C(—co, c0) is also a function of t, we shall also
write g(t; x) = (Gx){l).

Let I’(w) denote the Banach space of w-periodic functions defined on the

real axis with norm {x{, = sup [*()l}..
1G(- &, @)

Definition 1.1. The operator g(¢; ») defined for (/, x) € (—o0, ) X P(w)
is said to be w-periodic if 1g{t}'¢) == (Go)(t) & P(w). for () € P(w)

With the aid of the lemma and the definition, we can easily prove the
following theorem, which gives the form of the w-periodic solution of the
system (1.4). .

Theorem 1.1, If the matrix /() satisfies conditions 1° and 2° and the
operator g(¢; x) is w-periodic, then any w-periodic solution of the system
(1.4) is an w-periodic solution of the system of integral equations

o it o
L3l = = WX B X ()| X-25) glsi 9)ds, (1.5)
. ) ,‘ .\
and vice versa.

Proof: Let x = u(!) denote an w-periodic solution of the system (1.4).
Define - :

Bty =agt; u) =nGu)(t).

Then, x = u(f) is an w-periodic solution of the system

&= A%+ b)), (1.6) -

Since (1.6) has a unique w-periodic solution, it follows on the basis of the
lemma that '
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w(l) = — X({)B-'X(w) \ X-1(s)h(s)ds, .

R /
i

Consequently, «(f) is an w-periodic solution of the system (1.5).

Now suppose that # = v(f) is an w-periodic solution of the system (1.5).
Then, the function

(8 == Ag(ts v) = A(GY)(Y)

is w-periodic. According to the lemma, the function

t
la
.

o(t) = — X()B-1X(w) SX“(s)l(s)ds |

\ . I

\ - P

is the w-periodic solution of the system

X = A)x 4 z(z.),‘ /378

that is, x = v(() is the solution of the system (1.4), which proves Theorem 1.1,

Consider again the system of integral equations (1.'5)'.. Let us now write

(Ty)l) = — 21X (0B~ 2X{w) g X 2(s)gls  9)ds.

We note that, if conditions 1° and 2° are satisfied and the operator g{¢;») is
w-periodic, then the operator T is such that 7((w)) C P(w).

In what follows, we shall assume that the operator T is defined on the
space P{w). '

Theorem 1,2, If the matrix () satisfies conditions 1° and 2° and the
operator g(¢; x) is w-periodic and satisfies the condition

glts ) — gl < L — e,
for every pair x, v € I’(w), then there exists a unique w-periodic solution of the

system (1.4) for A sufficiently small,

Proof. We have already pointed out that T(P(w)) C P(w). Since the space
I’{w) is a Banach space, it remains to show that the operator T is a contraction
operator, which will enable us to apply Banach's fixed-point theorem, taking
P(w) as the fundamental space with the metric T

ol v) = sup Ju(t) = v(O)l = i = vllo.""

1€({—v, »)



Let A denote the domain 0 < ¢ < v, 0 < s << 2w and define
sup [|IX{¢ + «)B-2X-3(s)]| = m.

fort, s A

If the functions «(¢) and v({) belong to the space P(w), we have

46

KT = (T < i {IX0B- X(w) 22 (Sllgts: ) =

[

o

[M] [2]

— g(s; v)lds < IMmSLuu — tflpds = [MmS o (u, v)ds = [N map (u, b),

0 *

and, consequently,

p((Tw)(8, (To)() < MLmwpw, o).
If we take

1
] < ——
L'

™.
w
-3
o

|

It follows that T is a contraction operator and Theorem 1,2 is proven.

Remarks{ 1. In the particular case in which

T
| glt; x) = x/c(t, s, x(s)) ds

- .'0

|

where «(¢) is an w-periodic function and the vector-values function k{¢, s, )
is w-periodic with respect to t and continuous in the domain

A1 =J|{l e ('_w, OO),‘;\; = IH l‘ii ',' [

the number r being a bound on |«(/)|, similar results have been established by
1. V. Bykov and M. Imanaliev [3].

2, Another interesting special case is that in which g{¢; ) = g(¢; %),
where « < s << ¢, and v, = x (s}, thatis, g (¢/; ») is a Volterra operator,

2, In this section, we shall consider the problem of the existence of
almost-periodic solutions for a certain system of differential equations by s
using a particular Lyapunov function and the fixed-point method, ' v



Let us éonsider first the system of differential equations

x = f{t, x) + h(t), (2,1)

where f{t, x) & C((—s0, 90) X R"),, with f{t,, x) & C(R") for every point ¢, in
(—o0, 0), and #{t) & C(—o0, o0). Suppose that both functions assume values
in R*, Let A(, ») denote the greatest eigenvalue of the matrix

Jo b 3) = TAS; (6 3) + (4F; (4 ).

where 4 = (a)icijen 18 @ constant symmetric positive-definite matrix.
Theorem 2.1, Suppose that the following conditions are satisfied:‘

(@) A{, %)< —a<0 for (¢, %) & (—o0,00) X R* ;
B IO <p e lhil<y &

Then the system (2. 1) has a unique bounded solution » = %(}), (lx()ll <<R). If in
addition the functions f{t, x) and %(¢{) are almost-periodic with respect to t

uniformly with respect to x for |jx]] < R, then the bounded solution x = x({) is
also almost-periodic.

Proof:‘ We note first of all that the proof of the theorem is similar to that
of Theorem 2, due to Demidovich [2] with a necessary modification caused by
the term i(t). Define V(x) = (4%, x). We have

IR < (Ax, x) 2 «RE,
where «' and «'' are positive constants,

If x= x(f) is a solution of the system (2,1), we obtain
{

Viall)) = 20450, 2(0) = 2(4fU, 5), %) + A, #) =
(=24 %) = [t 001, %) + 2(Af, 0), 2) + 2(Ak(), 5).

!

‘From Demidovich's lemua [2] and condition (a), we obtain

(AL ) = [0, 0)1 ) < A Sl < = allef < = V()
| = — LV (x(t)). ' o

From condition (b), we obtain

) < = 2RV () + 20418 + sl < = 2V (0) +

@ . RN .

or
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o]~

I'/(x(t)) < = RV (&) + V% (50), (2.2)
where

v = 4| ﬁf—&‘-‘”—ﬁ

Using the result on differential inequalities (for example [1], p. 106), we find

©l) < [\/r/'“(;(z;ﬁ M . ﬂ

which implies the existence of bounded solutions.

To prove the uniqueness of the bounded solution x = x(f) , let us consider
the function V = (d(x — %), ¥ — x), where % = %(f) is another bounded solution
of the system (2.1). Then

2

V0 = AL = f T, ) = 7)< =) ~ 5Ol

so that
T < —2=T{),
@

that is,

() — ¥l < V S () = e e, L 4 (2.3)
By letting ¢, approach —oo , we see that x(f) = x{¢) for all t in (—o0, o), SO
that the bounded solution is unique. .
Let us now prove the second part of the theorem. We note first that since
S, ) and./;i(t) are almost-periodic, condition (b) is satisfied. Suppose that
hx(f)li < R.. Since f{¢, #) is a uniformly almost-periodic function of t for ‘|lxll < R,

it follows that, for all v > 0, there exists a o(%) > 0 such that every real inter=
val of length'a_vincludes at least one number = such that

I F ) = Sl A < — o0 << oo, all < R

and for such ~

(e %) — ROl <

Let us set

Vi) = (A (5@ +7) — %)), #+3) — 208)
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Then,

V) = (AU 5 8 4 ) A bl =) =

. - it x.(t)) — h(8)], 2t -+ %) —x(Y)) =
= (A A+ R) = S )] Al ) — 2() +
+ (AL 7 5(0) = fl #0))), %0 + %) — 5(9)

+
4 (A LA+ 2) —A()], (¢ - ) — x(t)) < — -i:- Y() + 4jj 4| R3

1
2

Therefore, .

. n . :

V) < Vit v 4 AR 0 gy 5, (2.4)

“ e
By letting ¢, approach —oc, we obtain
() < A pyr e,
[
that is,
- lwl 7)) = 2@ <, (2.5)

where » = 2\/J4]] Ro"ja«’ , which proves that the solution x = x() is almost-
periodic.

Remark: A similar result can be proven in the case in which f{¢, 1) is a ( 382
periodic function of t uniformly with respect to x for [|x|| < R and /() is periodic,

In what follows, we shall establish the existence of almost-periodic solu~
tions for a perturbed system of the form

x = f{t, %) + gt; %) (2.6)

where f({ x) is the function defined by Theorem 2.1 and g(t x) is the operator
defined in sect1on 1. Let us first give the

/ Definition 2. 1. The operator ¢(¢; x) defined for (¢, %) & (—o0, 00) X AP,
where /P is the Banach space of almost-periodic defined on (—oc, co) is said
to be almost-periodic if ¢(Y) € 4P for every function g({; ¢) = (Go)(t) € AP."

By using Theorem 2,1 and Banach's fixed-point theorem, we can prove



Theorem 2. 2; Suppose that the conditions of Theorem 2; 1 are satisfied and
that the operator g{¢; ») satisfies the condifion

1

iglts @) — glts ol < Liig — dllar, (2.7
for all (¢, o, ¢) & (=00, 00) X 4P X AP,
Then, if ||4]L/x < 1, the system (2,6) has a unique almost-periodic solution.

Proof:} For every ¢ € AP, let To . denote the unique almost-periodic solu-
tion of the system

= f{¢, %) +g(¢: 9), (2.8)

»

or, in different notation,

F=f 0+ Gol); (2.87)

(The existence of this solution is asserted by Theorem 2.1). The operator T
then has the property that 7'(dP) cC AP..

Let us show that T is a contraction operator, Let ¢, € AP and x = To,
y = Ty denote the solutions of the system (2. 6) that correspond to ¢ () and ()
respectively.
Consider the function V() = (4[() — y()], () — y(#). We bave
-;— Vi) = (A[5(0) — 31 %) — y() = (A[f, 5()) — ft, y0) + gt 9) =

= &lb )], #(l) — yU) = (A[f¢, 2@) — f&, yOD1 %0 —=yih + -
+ (4lglts @) = ( )] x() ()) o

According to Demidovich's lemma,

(AL 5(0) = [t 3] #0) = 3(0) < A, Diw) = yOF <
0 -yl < = = V. —

Similarly, according to Cauchy's inequality,

(Alsti9) = g6 91 50 = 20) < WAl gt o) = glh V1) — 900l <

<MMM—WHMM~NN’mHM~W vA@.



Consequently,

Lo < -2 v+ Bl -y v, (2.9)
or - . .
Lol < —av) +blo — e VRO, (2.9")
where
a=2s50, p=MlL,
o Ve

Using the result on differential inequalities that was used in the proof of
Theorem 2.1, we get

Vi) < VP e & {b”S" - "HHAP]""
a

[Translator's note: There seems to be a mistake in this equation. ]
so that

V”z(t) <' V‘V‘(‘t";')‘ c-—a(!—l.) + b”‘? - q‘“ﬂ'

P (2. 10)
where
V) = Vi), yl).
From inequality (2.10), we obtain
10 — 50 < V7T ™ —Crllp = Ylar, £30
O =N VTE T e~ e 20 oy
We shall now show that inequality (2. 11) implies
140 = Y01 < ~Loe o = Glaps ¢ She -
aVa ' rEe (2. 12)

PRI

Let us suppose that (2.12) is untrue. Then there exist ¢ <0 and ! & (—~ oo, o0) /384
such that - :

emms—

_ . b ‘ . - I"——“-_-‘i ‘,'_I‘.lﬂ".
W) =3O < —r==lip — $har + =, ¢ b0+ N(a). | :

| & ===
alla

Lo
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Since x() and y(/) are almost-periodic, there exists a = > ¢, — ¢+ N(:} thatis
an(¢/3)-almost-periodic function of x(/; — y(/) and hence

7%:-119 = Gar + & = 1) = 30 < 1050 = 3@ — [+ =
|
— DN+ 1+ ) = 3+ W < =+ e flg = Glar
3. dla

which implies ¢ < 2:/3,. Since this is impossible, inequality (2.12) is proven.

At the same time, inequality (2. 12) implies

e = Tilar & yille = Ylar, ).
that is \
#(To, To) < mp(o, 4),
where

b l4jLe JAIL

Hi == =

= & < 1,
allo ala’)? o “

which proves Theorem 2, 2,
Remarks:‘ 1. A similar result can be obtained in the case of periodicity.
2. An interesting particular case is that of the integro-differential equations

Vgl ) + gl %)

where

; gkt; %) = S k(t‘-— 8)a(s)ds, ‘,

-

this operator satisfying Definition 2, 2,
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